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Robust method for periodicity detection and characterization of irregular cyclical series
in terms of embedded periodic components

P. P. Kanjilal,* J. Bhattacharya,† and G. Saha
Department of Electronics and Electrical Communication Engineering, Indian Institute of Technology, Kharagpur 721302, Ind

~Received 8 May 1998; revised manuscript received 26 October 1998!

A method for periodicity detection is proposed where unlike available methods a periodic component is
characterized in terms of three basicperiodicity attributes: the periodicity ~or period length!, the periodic
pattern, and the scaling factors associated with the successive nearly repetitive segments. A scheme is proposed
for subsequent successive detection and extraction of such~hidden! periodic or nearly periodic components
constituting an irregular cyclical series. To our knowledge, the proposed decomposition is much more powerful
in terms of information content and robustness than the presently available tools based on Fourier decompo-
sition. Through the analysis of a variety of natural, experimental, and simulated data series, it is shown that the
features of the periodicity attributes of the embedded periodic components can lead to a meaningful charac-
terization of an irregular series in a new perspective.@S1063-651X~99!00404-3#

PACS number~s!: 05.45.2a
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I. INTRODUCTION

Any periodic or nearly periodic series@like electrocardio-
gram~ECG! @1,2## can be precisely defined in terms of thr
basic features orperiodicity attributes, namely,the periodic-
ity ~or period length!, the patternover the successive repet
tive segments, andthe scaling factorsassociated with the
repetitive pattern segments. A real life irregular series m
comprise a number of such components. Conventional a
lytical tools @3# based on the Fourier model can provide d
composition of an irregular series into sinusoidal comp
nents with constant scaling only for each repetitive segm
and hence lack in meaningfulness as far as individual no
nusoidal components of a real life series are concerned.
paper seeks to make a contribution by proposing a met
for the detection and subsequent separation of periodic c
ponents embedded in an irregular series, where the i
vidual componentsmay not be sinusoidaland the repetitive
successive segments may be scaled differently; the cha
teristic features or periodicity attributes of the compone
are shown to provide a platform for the characterization
irregular cyclical series.

The motivation for the proposed paper is basic and vas
follows. Bounded yet cyclical processes are ubiquitous
nature as well as in man-made systems, e.g., ECG@1,2# and
electroencephalogram~EEG! @4# signals, the white blood cel
count in a patient of leukaemia@5#, the childhood epidemic
phenomenon@6#, the oscillation in global temperature tim
series@7#, the solar activity as reflected in sunspot numb
@8#, the mass extinction activity@9#, the intensity of a vari-
able dwarf star@10#, the light intensity pulsations of lase
@11#, the electrical power load pattern in urban areas@12#,
etc. In many cases~like ECG!, the signals are nearly periodi
with characteristic nearly repetitive patterns, whereas in o
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ers~e.g., EEG! there is usually no repetitive pattern. Analys
have shown that some irregular cyclical series are compo
of a number of components~e.g., the yearly sunspot numbe
series has been shown to comprise two components or t
components@13–14#!. In some cases, the decomposition o
series into components can be directly meaningful. For
ample, from the composite ECG signal obtained from
abdominal lead of an expectant mother both fetal ECG
maternal ECG components can be obtained@2#; here, since
the two components have overlapping frequency bands, c
ventional Fourier decomposition cannot be applied for se
ration of two nearly periodic components from a single cha
nel signal.

Thus for a cyclical series, the basic characteristics t
stand out are that the signals are bounded in magnitude
cyclicity shown may be regular, or may be irregular whe
the degree of irregularity can vary. For astrictly periodic
series~which may or may not be sinusoidal!, all three peri-
odicity attributes remain unchanged. In case of a real
cyclical series~e.g., ECG, far infrared ammonia laser inte
sity!, all three attributes may vary to some extent, where
nature of variation may relate to the characteristics of
underlying process@15#!; we use the broad term ‘‘nearly pe
riodic’’ for such processes. Thus, an irregular cyclical ser
can belong to three broad categories:~i! series which can be
decomposed into a number of sinusoidal or nonsinuso
constituents~e.g., the sunspot series!, ~ii ! series that show
only one periodic component, whose periodicity attribu
may remain stationary only locally but may vary global
~e.g., the far infrared~FIR! laser series!, ~iii ! series that con-
tain no periodic components that are at least locally sta
~e.g., heart rate variability series for healthy subjects@16#!.

The constraint in analyzing such irregular cyclical ser
through conventional techniques@3# ~such as power spectra
density, periodogram etc.! is that it is assumed that the serie
can be decomposed into multiple components, where o
sinusoidal pattern is permissible for each component and
successive periodic segments of each component canno
scaled differently. As a result, the decomposed compon
lack physical significance. Again, the cyclic theory of cha

s-
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@17# offers different approaches for the detection of perio
orbits, where periodicity in terms of repeating occurrences
points are detected; in the case of chaotic processes,
periodic orbits are found to be unstable. Here also the av
able insight into the nature of the individual compone
constituting the irregular cyclical series is limited.

The basic questions that need addressing are:~a! can un-
known periodic or nearly periodic components constitut
an irregular series be detected and extracted, where the
ponents can be nonsinusoidal and may have overlapping
quency bands, and~b! can the periodicity attributes of th
single or multiple components detected offer newer und
standing in terms of the characterization of the underly
process? This paper attempts to address these issues.

The proposed method of periodic decomposition is
tailed in Sec. II. The concept of periodicity spectrum~or p
spectrum! is introduced, and it is shown howp spectrum can
be used to detect the presence of a periodic component
den in any data series. The procedure for successive d
tion and extraction of the constituent periodic component
discussed. A corollary to the above procedure is thelong-
term predictionof the composite series through the period
prediction of individual component series. The proposed
composition scheme is based on singular value decomp
tion ~SVD!, a robust algebraic tool, which has been wide
used for solving least-squares estimation problems@18,19#,
for modeling and prediction@20–22#. The results are detaile
in Secs. III and IV. Section III demonstrates the superior
of the proposed method against Fourier decomposit
Since Fourier decomposition provides only a partial pict
of the underlying process because of the inherent limita
of each component being sinusoidal with constant sca
throughout, a direct comparison is not possible; howeve
is shown how Fourier decomposition can be misleading e
for periodicity detection, when noise and signal bandwid
overlap or when the constituent periodic components h
overlapping frequency bands, whereas thep spectrum re-
mains relatively unaffected. In Sec. IV, the potential in t
proposed method for providing a platform for characteriz
irregular cyclical series is demonstrated through four
amples:~1! the natural series of sunspot numbers,~2! the
experimental series of FIR-ammonia laser intensity pu
tions, and~3! the simulated chaotic series of the Macke
Glass equation and~4! the logistic map process.

II. THE PROPOSED METHOD

A. Data configuration and singular value decomposition

Let the series$x(k)% be configured into anm3n matrix
An :

An5F x~1!

x~n11!

•

•

•

x~~m21!n11!

x~2!

x~n12!

•

•

•

•

¯

¯

•

•

•

¯

x~n!

x~2n!

•

•

•

x~mn!

G . ~1!

SVD @18–21# of An producesAn5USVT, whereU andV
are orthogonal matrices:UUT5UTU5I , VVT5VTV5I ; S
5diag(s1,s2,...,sr :0), r 5min(m,n) ands1>s2>...sr>0. The
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SVD provides the orthonormal basis of the range and
null space of the matrix An . The columns of U
(5@u1 ,u2 ,...,um#) ~i.e., the left singular vectors! corre-
sponding to nonzero diagonal elements ofS span the range
and the columns ofV (5@v1 ,v2 ,...,vn#) ~i.e., the right sin-
gular vectors! corresponding to zero diagonal elements oS
are an orthonormal basis of the null space ofAn . The num-
ber of nonzero singular values (si) gives the rank ofAn .

In the present context, SVD offers some unique adv
tages in connection with the assessment of embedded
odicity in $x(k)%, as follows.

~i! For astrictly periodic$x(k)% with period lengthN, i.e.,
x(k)5x(k1N), An will be a strictly rank one matrix if row
lengthn5N. Here,s1 is nonzero buts25...5sr50; s1 /s2
5`. The vectorv1 represents theperiodic patternof the
signal normalized to a unit vector. The successive eleme
of the vectoru1s1 represent theamplitude scaling factorsof
successive pattern segments;$x(k)% being perfectly periodic,
the elements ofu1s1 will all be the same.

~ii ! If $x(k)% is nearly periodicwith fixed period lengthN
but x(k)Þx(k1N), two possibilities may arise:~a! $x(k)%
has same repeating pattern of lengthN but with different
scaling over different periods. Still rank(An)51 ands1 /s2
5`; v1 represents the pattern but the elements ofu1s1 now
vary according to the scaling associated with the rows ofAn .
We use the term ‘‘periodic’’ to include such phenomen
also. ~b! $x(k)% has nearly repeating patterns with differe
scaling factors over successive segments. The matrixAn can
now be a full rank matrix but withs1 much larger compared
to the rest of the singular values, i.e.,s1 /s2@1.

Remarks.~1! A dominant first singular value for anym
3n matrix An is indicative of the presence of a strong pe
odic component~of period lengthn! in $x(k)%, given by the
rows of u1s1v1

T . ~2! SVD is the most robust null-space de
tector of a matrix compared to other eigen decompositi
@22#; it is numerically well conditioned and can be comput
in a numerically stable way. The efficiency of SVD in nois
separation and in estimating embedding dimension is w
established@23#. ~3! The present configuration of the da
matrix ~1! is different from the conventional form of th
trajectory matrix formed of lag vectors or states@23#, where
all the states~in sufficient embedding dimensional space! are
considered, whereas only the states, which aren sequences
apart from each other, are considered in Eq.~1!, with no
overlapping of data elements across the rows of the mat

B. The proposed method of periodicity detection

$x(k)% is configured intom3n matrix An with varying
row lengthn and SVD ofAn is performed. The spectrum o
the ratio of first two singular valuess1 /s2 vs. row length~n!
is called theperiodicity spectrumor ‘‘ p spectrum’’ @24#,
which will show repetitive peaks atn5 iN ~where i is a
positive integer!, if there is any embedded periodic comp
nent of periodicityN in $x(k)%, and this serves as periodicit
detection.

Here, the repetitive peaks in thep spectrum are formed a
n5 iN as the presence of a periodic component of periodic
N tends to increase the closeness to rank oneness oAn
~when configured asn5 iN), which is reflected in the in-
crease in the value ofs1 and decrease in the value ofs2 . The
p spectrum is detrended for improving the readability of t
peaks@25#.
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Remarks.~i! $x(k)% has to be at least 4N long for the
periodicity of lengthN to be detectable using thep spectrum,
as at least two peaks~i.e., atn5N and n52N) are neces-
sary. ~ii ! The absence of a set of repetitive peaks in thep
spectrum of$x(k)% confirms the absence of a periodic com
ponent in the series.~iii ! Many ramifications of the propose
periodic detection scheme are possible, for example, the
may be nonlinearly transformed prior to periodicity dete
tion; the appropriateness of the transformation may be
sessed through the improvements in the sharpness o
peaks in thep spectrum.~iv! For automated detection o
periodicity, any suitable indexI (n) may be defined ex-
pressed as a function of the strengths ofs1 /s2 at jn row
lengths, wherej is a positive integer~see, for example,@26#!.
~v! The computational load for the proposed method is
pected to be moderate. It is not necessary to compute
complete SVD. Computation of singular values for anm
3n matrix involves 4mn2-4m3/3 flop counts@18#.

C. Successive extraction of periodic components

Following the detection of a periodic or nearly period
component~of periodicity N!, $x(k)% is configured intoAn ,
~with n5N), for extraction of the concerned period. The be
rank-1 approximation ofAN in least squares~LS! sense is
given by u1s1v1

T @18–19#. Here @27#, v1 represents the pat
tern over the periodic segments of the extracted compo
of periodicity N; the successive elements of the vectoru1s1
~which is modeled as the series$g(k)% as in Sec. II E! will
give the scaling factors for the successive periodic segme
The time series defined byu1s1v1

T , being periodic with pe-
riod lengthN, is the LS estimation of the periodic compone
present in$x(k)% having maximum energy (5s1

2).
The matrix@AN2(u1s1v1

T)# can be made into a residua
series$xr(k)%. The p spectrum of$xr(k)% will show the
presence of additional dominant periodic component~if any!,
which can be extracted the same way as above, and the
cess is repeated. The extraction stops when thep spectrum
does not show any repetitive peaks.

Thus the method leads to periodic decomposition thro
the successive extraction of periodic components from
original series; an individual component has fixed per
length and periodic pattern, which is not necessarily si
soidal.

For an irregular series, if no globally stable periodicity
detectable through thep spectrum, presence of periodicit
over shorter local data segments may be detected usi
moving data window as discussed in Sec II F.

D. The final model

A data series$x(k)% with multiple components can b
modeled as

$x~k!%5$g1in1~k1!%1$g2jn2~k2!%1¯ , ~2!

wherei is the period index of first component,j is the period
index of second component,k151,...,N1 , whereN1 is the
periodicity of first component,k251,...,N2 , whereN2 is the
periodicity of second component,g1i is the scaling factor for
1st component ini th periodic segment,g2 j is the scaling
factor for 2nd component inj th periodic segment,n1(k1) are
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elements of the pattern of the first component,n2(k2) are
elements of the pattern of the second compone
@n1(1),...,n1(N1)#5v1

T , the first right singular vector of
data matrixAN1

, @n2(1),...,n2(N2)#5v2
T , the first right sin-

gular vector of data matrixAN2
generated from$x1(k)% and

$g1in1(k1)% is a component series with periodicityN1 ; the
successive segments of the series have theN1-long pattern
v1

T , which are scaled byg11,g12, etc.

E. Long-term prediction

The long-term prediction of each of the extracted perio
components is performed. The overall prediction is obtain
by adding up the predicted components. For any perio
series,g(k1 i uk), the i step ahead prediction of$g(k)%, will
lead to i period ahead predictiong(k1 i uk)v1

T , with the as-
sumption that patternv1 remains unchanged over the pr
dicted horizon~the suffixes as in Eq.~2! are omitted for
clarity!. The modeling is performed as follows:~i! First con-
sider the linear model for the scaling factor series for o
component:

g~k!5a1g~k21!1a2g~k22!1¯1arg~k2r !. ~3!

The best set ofr 1 (<r ) lagged variables is selected usin
modified QR with column pivoting factorization (m-QRcp
factorization@28#!, with minimum Cp statistic @29#, as ex-
plained in the Appendix.~ii ! From the selectedr 1 variables,
square and bilinear variables are generated@30#; it is ex-
pected that incorporation of these additional variables in
description of variables along with the originalr lagged vari-
ablesg(k) in Eq. ~3! will improve the model.~iii ! The final
set of variables are determined usingm-QRcp factorization,
with minimum Cp statistic, and thus an optimal linear in th
parameter but nonlinear in the variables model is develop
~iv! The parameters of the model are estimated using the
estimation, andg(k1 i uk) predictions are produced.~v! The
individual predicted components are added up to give
overall prediction@31#.

Remark.The unique advantage of the proposed appro
of modeling and prediction is that the conventionali step
ahead prediction$g(k1 i uk), etc.% is renderediN step ahead
prediction.

F. Detection and extraction of periodic component using
moving data window

In Secs. II B and II C the detection and the extraction
the periodic component~s! was assumed to be over the enti
data set. But for nonstationary data series, the periodi
attributes are dynamic in nature, and all three periodic
attributes may vary throughout the process. To accommo
such nonstationarity, a moving data window is considered
follows. The data series$x(k)% is divided into overlapping
data segments, referred to as data windows, as shown in
1. Here,m5a parameter determining the length of one w
dow, N15the periodicity in the first data window, andN2
5the periodicity in the second data window, etc.

In general, ifNi5the periodicity in theith data window,
then the length of the (i 11)th data window ismNi . Two
data windows ~say, i th and (i 11)th thus overlap over
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(m-1)Ni data points. In each data window~say,jth window!,
dominant periodicity~say, Ni) is detected through thep
spectrum and the periodic component associated with
detected periodicity is determined; only the first period~of
lengthNi) from this periodic series is extracted, and this p
of the series is truncated. The whole procedure is repe
for the next data window. The obtained extracted perio
from the successive data windows are stitched togethe
form the entire estimated component. This estimated com
nent is actually composed of different segments having
ferent periodicity, as well as different pattern and scal
factors associated with the pattern. The estimated series
resemble one being generated by an oscillator~or periodicity
generator! with time-varying periodicity attributes.

For some processes, the periodicity~N! may be globally
stable, while the associated pattern can vary. This is a sp
case, whereN15N25...5Ni5...5N, and may be termed
asmoving window with fixed periodicity.

In this paper, we usem55, unless otherwise stated, whic
is not a limitation.

III. COMPARATIVE PERFORMANCE ASSESSMENT
AGAINST FOURIER DECOMPOSITION

As argued in Sec. I, the fundamental difference betw
the proposed method of periodicity detection and the Fou
decomposition based approaches is that while the latte
confined to components with sinusoidal patterns and cons
scaling for the successive repetitive segments, the for
does not have any such restriction, and hence may be
sidered to provide a generalized decomposition. In this s
tion, first the results withp spectrum are discussed. Nex
through some simulation studies, it is shown how Four
decomposition may lead to erroneous conclusions.

A. The p spectrum of some processes

The yearly averaged sunspot series is widely known
contain a dominant periodic component of periodicity of

FIG. 1. The schematic diagram of the moving data windo
There are two variations of this algorithm:~i! moving data window
with fixed period, and~ii ! moving data window with varying peri-
ods. In the former case, the periodicity is globally stable but
pattern and the scaling factors associated with each window
vary. In the latter case,p spectrum is performed for each data wi
dow; all three periodicity attributes can vary over the total data
e
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years@13,14#. The features of this series are studied in de
in Sec. IV A. Thep spectrum for the sunspot series~over
1700 to 1938! in Fig. 4~a! shows repetitive peaks at (n5)
integer multiples of 11, validating the presence of the m
dominant component of periodicity of 11 years.

Again, as detailed in Sec. IV C 2, the one-dimensional
gistic map@32# x(k11)5rx(k)(12x(k)), which is usually
a chaotic process, exhibits stable periodicity for specific v
ues ofr within 3 and 3.57. Thep spectrum@Figs. 13~a! and
13~b!# show distinct periodicity of 32 forr 53.5687, and
periodicity of 2 forr 53.6786; the series of distinctly repet
tive peaks inp spectrum~unlike the sunspot case! implies the
presence of onlyoneprime periodic component.

B. Study with white noise contamination

The sunspot series is reconsidered here with noise c
tamination. The strongest peak in fast Fourier transfo
~FFT! also shows the most dominant peak corresponding
the prime periodicity@Fig. 2~a!#. However, when contami-
nated by white noise, beyond 220% noise contaminat
~with respect to the signal in terms of energy!, FFT fails to
correctly detect this periodicity, whereas thep spectrum can
withstand up to 300% contamination and yet detect 11 ye
as the prime periodicity.

.

e
an

t.

FIG. 2. ~a! FFT of the sunspot series~1700–1988!, ~b! p spec-
trum of the same series,~c! FFT of the colored noise generated,~d!
p spectrum of the colored noise signal,~e! FFT of the contaminated
sunspot series where the strongest peak is different from that of
2~a!, ~f! p spectrum of the contaminated sunspot series, showing
prime periodicity of 11 years,~g! the periodicity index profileI (n)
for the original sunspot series~derived from thep spectrum@26#!,
and~h! for the contaminated sunspot series; in both cases, the s
gest peak is at 11.
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FIG. 3. ~a! and~b! The pattern
profiles of the periodic compo-
nents of periodicity 18 and 17, re
spectively, ~c! FFT of the noise
contaminated composite serie
which does not reveal the period
icity of 18 and 17 clearly,~d! the
p spectrum of the same composi
series, showing repetitive peak
corresponding to periodicity of
18, and~e! the p spectrum of the
residual series~after extraction of
component of periodicity 18!
showing peaks corresponding t
periodicity of 17.
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C. Study with colored noise contamination

If colored noise has a strong peak at a frequency differ
than that due to the embedded periodic component in
signal, the strongest colored noise frequency is picked up
FFT as the prime component, whereas thep spectrum re-
mains unaffected as follows:~a! The sunspot series is con
taminated by band-pass filtered white noise. First, the w
noise series is passed through a low-pass filter@(12p1)/(1
2p1q21)# with single polep1 at 0.8; the output of the filter
is subtracted from the original series. The resulting serie
passed through a filter with a polep1 at 0.2. FFT of this
colored noise shows a peak at frequency of 88@Fig. 2~c!#,
while the sunspot series has the prime peak at 96@Fig. 2~a!#
~i.e., corresponding to a periodicity of 1024/96510.91).
With 239% of this colored noise, FFT@Fig. 2~e!# of the
composite signal shows 12~years! as the most dominant pe
riodicity ~as the peak is at 88! in the contaminated sunspo
series. Thep spectrum of the sunspot series, the noise sig
and the contaminated sunspot series are shown in Figs.~b!,
2~d!, and 2~f!, respectively, wherep spectrum still shows 11
years as the prime periodicity irrespective of the contami
tion, which is also confirmed by the strongest peak at 11
nt
e
y

te

is

l,

-
n

the periodicity index@26# profile shown in Figs. 2~g!–2~h!.
~b! The sunspot series is contaminated with a noise sig
given by @33#

h~k!5870~a/p!0.25exp~ak2/21 j bk2/21 j vk!,

where a50.000005,b50.00035,v5101, andj 5A(21).
This series has an overlapping frequency band with tha
the sunspot series. FFT fails to show 11 years as the pr
periodicity in the contaminated data for.11.45% noise,
whereas thep spectrum can still show 11 years as the prim
periodicity.

D. Study with „multiplicative … chaotic noise contamination

Two periodic components of periodicity 18 and 17 havi
close patterns are generated@Figs. 3~a!–3~b!#; the scaling of
the repetitive segments of the former is contaminated
noise elements derived from the Henon map process@34#,
and the two series of periodicities 18 and 17 are added
gether, where the former is 4 times stronger than the ot
The FFT of the composite series@Fig. 3~c!# is misleading,
and no clear picture emerges from the FFT about the ac
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periodicities present. On the other hand, thep spectrum of
the composite series detects 18 to be the most dominan
riodic component present@Fig. 3~d!# and when it is extracted
the p spectrum@Fig. 3~e!# of the residual series shows 17
be the next periodic component present.

E. Justification for the superiority of the p spectrum
in periodicity assessment

The p spectrum involves LS estimation~in rank-1 sense!
of the most dominant periodic pattern in the signal or d
sequence, where the successive segments can be scale
ferently. In a noise-free case, the strongest sinusoidal c
ponent will correspond to the strongest periodic compon
present in the signal. But when there is significant variat
in either or both,~i! the optimal pattern from a sinusoida
pattern of the same period length and~ii ! the scaling over
successive repetitive segments, FFT is likely to miss
prime periodicity, because another sinusoidal compon
with constant scaling may appear to be stronger than the
corresponding to the periodicity of interest. Thus FFT can
misleading. In wide ranging trials, we found no occasi
where FFT detects the periodicity correctly, whereasp spec-
trum fails.

Remark 1. pspectrum is conceptually, numerically, an
computationally perhaps the most robust method for per
icity detection. The justification is as follows: ‘‘Nearness
rank-oneness assessment’’ is implicit with any method
periodicity detection~including Fourier decomposition an
autocorrelation-function-based approach!. The p spectrum
does it more formally than the existing methods. Sincema-
trix rank is the most basic property of any data set, and si
SVD is the most robust tool for rank assessment~both nu-
merically and computationally!, for a given data set, ther
can be no better way of detecting embedded periodicity t
through nearness to rank-oneness assessment throughp spec-
trum, particularly when there are multiple periodic comp
nents present and/or when there is significant noise pres
Even in the case of a single time-varying component@e.g.,
laser intensity~see Sec. IV B!#, sinusoidal decomposition
cannot provide as complete insight as obtained by the
posed method.

Remark 2.Although in the present studies, different typ
of extraneous noise contaminations are considered, it is
derstood that additional periodic components within the s
nal may act as contamination for the component~s! of inter-
est.

IV. MISCELLANEOUS RESULTS

A. The natural process of sunspot numbers

Data type.The series of sunspot numbers is widely r
searched@7,13,14,35–37#, as it is an indicator of the genera
solar activity. Here, the yearly averaged data over 170
1938 are used for modeling, and the data over 1939–1
are used for validation.

Periodic decomposition and prediction.The p spectrum
of yearly averaged data over 1700–1938 shows repet
peaks at (n5) integer multiples ofN1511 @Fig. 4~a!#; the
extracted periodic component of periodicity 11 years
shown in Fig. 5~a!. Proceeding the same way, we succ
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sively detect and extract two additional periodic compone
@Figs. 5~b! and 5~c!# of periodicity 10, and 12 years~in de-
creasing order of energy!, respectively. The estimation usin
three stable periodic components is shown in Fig. 6. T
multistep prediction was performed on each of the perio
components, which added together produce the overall
50 step ahead prediction@Fig. 7~a!# over 1939–1988, where
the predicted peaks are found to be correct to61 year; the
corresponding correlation coefficient~r! vs prediction time
(Tr) profile is shown in Fig. 7~b!. Note that the correlation
coefficient remains high over much longer prediction horiz
~in contradiction to@37#!.

Study of noise sensitivity.To the original series, four dif-
ferent types of additive disturbances, namely, white no
correlated noise, chaotic disturbances implemented thro
M-G equation, and Henon map process, are added. All
three periodic components could be detected for 74%, 5
75%, 35% contamination, respectively; the original ser
and the corresponding noise contaminated series are sh
in Figs. 8~a!–8~e!. For each contaminated series, multist
prediction was performed with the possible number of e
tracted periodic components; the corresponding residual
of squaresS«2/s2 profile is shown in Fig. 9. The result
demonstrate the robustness of the proposed method ag
disturbances.

Analysis of p spectrum.In the p spectrum of the original
series@Fig. 4~a!#, some peaks appear at row lengths, wh
are not integer multiples of the periodicity of 11; the possib
reasons are~a! the presence of additional periodicities~where
the individual periodic components may have overlapp
frequency bands!, ~b! the noninteger period lengths of per
odic components, and~c! the nonlinearity in the underlying
dynamics. It is already shown that the series is compose
three periodic components~Fig. 5!; the two remaining issues
are addressed as follows. To accommodate noninteger
odicity, the original data are interpolated tenfold, when th
effective periodicities detected are 11.1, 10.0~as in@13,14#!,
and 11.9. To study the nonlinearity in the series, a pha

FIG. 4. ~a! Thep spectrum of the sunspot series showing repe
ing peaks atn511 and its multiples, which is due to the mo
dominant embedded periodicity of 11 years.~b! The p spectrum of
the surrogate series, showing much pronounced peaks atn511 and
its integer multiples. Such a feature is also observed in thep spec-
trum of logarithmically transformed sunspot series. The relat
dominance of the peaks is due to the underlying nonlinearity a
ciated with the series.
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FIG. 5. ~a!–~c! The individual components of periodicities (Ni5) 11, 10, and 12 years, respectively, successively extracted from
sunspot series. The components have been successively extracted in order of the decreasing energy content.
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randomized surrogate series is generated from the orig
series@38# having the same mean and similar power sp
trum as the original series. Thep-spectrum peaks becom
significantly pronounced for the surrogate series@Fig. 4~b!#,
confirming nonlinearity in the data~as in @35–37#!.

Observations.~i! The sunspot series is composed of thr
stable~nearly! periodic components~where the residual en
ergy is less than 8% of the signal energy!. ~ii ! Long term
~with respect to the length of the data series concerned! pre-
diction of the series is possible~in contradiction to@37#!.
This demonstrates~a! the ‘‘richness of the information con
tent’’ of the periodic components obtained by the propos
method and~b! the inherent strength of the proposed a
proach for ‘‘long-term periodic prediction.’’@See also obser
vation ~i! of Sec. IV C 1.# ~ii ! Although analysts have re
ported the sunspot series as chaotic@14,35# with reservation
due to the insufficiency of data@13#, according to the presen
results theconcerned length of the data seriesdoes not dis-
tinctly reveal chaoticity, although we confirm inherent no
linearity and determinism.

B. An experimental process: FIR NH3 laser intensity

Data type.The FIR ammonia laser data series@11# @Fig.
10~a!#, is believed to represent Lorenz-like chaoticity@39#.
The series is made up of a series of segments, where w
a segment the amplitude gradually tends to decrease.
length of each segment is about 500 data points and a s
type transition occurs at the end of a segment leading
subsequent segment, which again starts from a large am
tude. Thep spectrum of the global data set~;5000 points! is
shown in Fig. 11~a!, the absence of repetitive distinguishab
peaks reveal absence of any globally stable periodicity.
the search for periodicity is extended to the local data s
ments.

Analysis of local segments.The first 270 points from one
segment~;500 points! is taken for analysis. Thep spectrum
@Fig. 11~b!# shows nonuniformly sized peaks at~n!
7,14, . . . 56, 63, 69,76/77, 84, 91,97, 104, . . . ~the largest
peak at 97 is 3.27 times the fundamental peak in terms
magnitude!; note that the peaks in thep spectrumdrift to row
lengths, which are noninteger multiples of the fundamen
row length (n57). To verify the presence of nonintege
periodicity, the data are interpolated 100-fold; thep spectrum
@Fig. 11~c!# now shows effective periodicity of 6.88~with
relatively uniformly sized peaks at 688, 1376, 2064, 27
3440, 4128, . . . where the strongest peak at 3440 is 1
times that at 688!. The extraction based on stable periodic
~of n5688) and pattern on the interpolated data was fou
to be poor because of the instability of the pattern. So,
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periodic extraction is performed with moving data window
having fixed periodicity~as in Sec. II F! as it permits varia-
tions in pattern over different windows, enhancing the e
traction performance. Figure 10~b! shows the gradual varia
tion of the patterns of the periodic segments of the extrac
periodic component. No subsequent periodicity is detecta
in the residual series throughp spectrum.

Stability of periodicity attributes.In the subsequent analy
sis the periodicity and pattern are both permitted to vary w
the moving data window. The dynamics primarily show o
cillations in periodicity @Fig. 10~c!# with relatively similar
periodic pattern@Fig. 10~c!# within one data segment, while
over different data segments the patterns tend to vary.
ures 10~e! and 10~f! show the closeness of the state-spa
diagrams for the original and the extracted global ser
where the residual energy is less than 0.2% of the sig
energy.

Observations.Thus the present study reveals the follow
ing interesting~hitherto unavailable! insights into the laser
intensity dynamics. The laser series exhibits~i! stable local
periodicity but unstable pattern within a part of a segme
~ii ! stable pattern with normalized periodicity within a se
ment, and~iii ! unstable periodicity and pattern in global co
text, confirming inherent chaoticity.

C. Simulated chaotic processes

1. The Mackey-Glass series

Data type.Consider the delay differential Mackey-Glas
~MG! equation@5,40#:

dx~ t !/dt50.2x~ t2t!/@12x10~12t!#20.1x~ t !.

It has been introduced as a model for the regeneration
blood cells in leukaemia patients.x(t) represents the densit
of circulating cells at timet, when it is produced, andx(t
2t) is the density when the request for more blood cells w

FIG. 6. Estimation of the sunspot series with three additive
tracted components having periodicities of 11, 10, and 12 ye
~original series , estimated series ......!; the residual energy is
7.52% of the original series. Thep spectrum of the residual serie
does not show presence of any more periodic component.
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made. For 4.53,t,13.3, there is a stable limit cycle attra
tor. A period doubling bifurcation sequence is observed
1.33,t,16.8. Fort.16.8, numerical simulations exhib
chaotic attractors@40#.

Analysis.The present study is confined to two broad ch
otic zones of the series.~a! For t517 to 23, two dominant
periodicities close to 3t and 2t are detectable. The periodic
ity attributes are dynamically varying; modeling and pred
tion are possible for short ranges~with respect to the period
icity! only. For t523, with the first 3000 points discarde
two components of periodicities of 72 and 46~over ;500
points! are found@Fig. 12~a!#. The long term prediction@Fig.
12~b!# produces r50.729 for prediction horizon (Tp)
5200, whiler drops gradually beyond 200, e.g.,r50.552

FIG. 7. ~a! 1 to 50 year ahead prediction~over 1939–1988! of
the sunspot series using three separately predicted components~Ac-
tual series , predicted series ......!. The scaling factors for 11
10, and 12 yearly components are modeled as:g(k)5 f „g(k
21),g2(k22)…, g(k)5 f „g(k210)…, and g(k)5 f „g(k26),g2(k
26)…, respectively;f is a nonlinear function@30# formed from the
past value of the$g(k)% series, where the best set of variables h
been selected through minimization of theCp statistic @29#. ~b!
Correlation coefficient~r! between the predicted and the actual v
ues, shown as a function of prediction horizon (Tp), remains at a
high value signifying much improved long-term predictability th
others@35–37# and inherent determinism.
t

-

-

for Tp5450. ~b! For t.23, ~i! the estimation through peri
odic decomposition is locally valid only and hence meanin
ful prediction is not possible,~ii ! over larger data spans pe
riodicity varies widely. For example, fort530, the prime
periodicity varies irregularly~unlike in the case of the globa
laser data series! between 85 to 109 detected over;1000
points, using moving data windows.

Observations.~i! Once again high prediction correlation
obtained for long prediction horizons@Fig. 12~b!# irrespec-
tive of the underlying process being chaotic~contradicting
conventional understanding of poor predictability for chao
processes! @41#. The following conjectures are in order:~a!
the components obtained though the proposed periodic
composition contain rich information about the underlyi
process, and~b! long-term predictability of a chaotic proces
may be possible, if the inherent order~if any! can be deter-
mined and can be properly modeled by a prediction al
rithm, as proposed.~ii ! For t517 to 23, there are two em
bedded periodicities of 3t and 2t, where ‘‘chaoticity is
revealed through the variations in the periodic
attributes.’’ ~iii ! For t.23, with increasing chaoticity~i.e.,
with increasingt @41#!, the zone of relative regularity~in
terms of stable periodicity attributes! contracts. This is a spe
cial case where the ‘‘variability of the periodicity surpass
the concerned period lengths,’’ a typical characteristic
strong chaoticity.

2. The logistic map process

The one-dimensional logistic map@32# x(k11)
5rx(k)@12x(k)# exhibits stable periodicity for specific val
ues ofr within 3 and 3.57; beyond which (r .3.57) the map
exhibits chaoticity mixed with order. We analyze the map
different values forr. Thep spectrum@Figs. 13~a! and 13~b!#
show distinct periodicity of 32 forr 53.5687, and periodicity
of 2 for r 53.6786, both being globally valid. The period
extraction with fixed period and pattern is performed. In t

s

ces such

hown only
FIG. 8. ~a!–~e! The original sunspot data series and the series contaminated with four types of additive measurement disturban
as white Gaussian noise~74%!, correlated noise~58%!, chaotic contamination through Henon map~35%!, and Mackey-Glass process~75%!
with t5100, respectively. The bracketed term indicates the percentage of noise energy compared to signal energy. We have s
those noisy data series with a maximum amount of disturbances for which the proposed algorithm successfully detectsall the three periodic
componentswith periodicity 11, 10, and 12 years.
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former case@Fig. 14~a!#, there is perfect match~RSS50%!
between the extracted component and the original series
the latter (r 53.6786) a relatively larger error is observe
~RSS varying between 3.0% to 13.5% over different d
segments!. To accommodate the variation in the pattern
the latter case, the periodic component is extracted wit
moving window with fixed period~52! and is shown in Fig.
14~b!; the error reduces significantly~RSS varies from 1.5%

FIG. 9. Residual sum of square~error!/variance~i.e.,S«2/s2) is
shown as a function of measurement disturbances~as % of the
signal energy! in terms of white noise~ !, colored noise~.......!,
Henon map @34# ~ s !, and Mackey-Glass@40# equation (t
5100) ~—•—!. We could detect all the periodic components f
the worst type of additive disturbances~up to 35% of Henon map!;
the prime periodicity could be detected for all types of disturban
up to 99%. Similarly, effects onr were assessed~e.g., for worst
cases,r50.498 for 99% disturbances!.
or

a

a

to 2.5%!, confirming instability in pattern in global sens
For r 53.92, no globally stable periodicity is observe
throughp spectrum@Fig. 13~c!# except for short data spans
For data segments of 50, periodicity varies between (N5) 5
to 8; the periodic extraction over a segment forN55 is
shown in Fig. 14~c!. Here larger RSS variations~from 10.5%
to 17.2%! are observed over different data segments c
firming the absence of any globally stable periodicity.

Observations.The study reveals that the logistic map pr
cess possesses~i! globally stable periodicity and pattern be
fore entering into the chaotic regime,~ii ! globally stable pe-
riodicity but unstable pattern for certain specific values or,
e.g., r 53.6786~expectedly due to inherent chaoticity!, and
~iii ! globally unstable period and pattern well into the chao
zone.

V. CONCLUSIONS

The proposedp spectrum based method is possibly t
most robust method for the detection of periodicity of sin
soidal or nonsinusoidal periodic components contained in
irregular data sequence. The proposed is a generalized
cept ~for the detection of embedded periodicity and the d
composition of a data series into multiple periodic comp
nents, which are not necessarily sinusoidal!, of which the
Fourier decomposition can be considered to be a special
set.

The proposed characterization in terms of the three
tected ‘‘orthogonal’’periodicity attributes, namely, the peri-
odicity ~or period length!, periodic pattern, and scaling facto
for the successive periodic or nearly periodic segments
periodic series, provide complete description of a perio

s

rifts
with fixed
s
ata
gradually;

inal series;
FIG. 10. ~a! Chaotic pulsations of FIR-NH3 laser.~b! The local variations of pattern with effective periodicity 6.88 showing gradual d
of the patterns. The extraction based on stable periodicity and pattern was found to be poor because of the instability of the pattern
period. So for extraction from the 100-fold interpolated data series, a moving window length~with fixed periodicity 688! has been used a
it permits variations in pattern, enhancing the extraction performance.~c! Variations of the periodicity over the global data set; within a d
segment, periodicity varies approximately between 6.7 to 9.7. The period usually starts from the lowest value, and then increases
on reaching the upper limit, the periodicity abruptly drops to the lowest value, and so on.~d! The normalized~with respect to the period
length! patterns within one segment showing nearly repetitive profiles.~e! and~f! State-space plots of the original series~;5000 points! and
the extracted series, respectively, show that the extracted component carries almost the same dynamical information as in the orig
the residual energy is as low as 0.46% of the original series.
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series. It has been demonstrated that the proposed app
can lead to the unearthing of rich information about the
derlying process in terms of the characteristic periodicity
tributes, and thereby extract the orderly part hidden wit
any irregular series, which can make long-term predict
possible even in the presence of chaoticity. The propose
fundamentally different from the existing Fourier-mode
based approaches, and has been shown to be more
immune and to be able to provide more meaningful analy
than the existing analytical tools.

Periodic component~s! in a chaotic process are unstable
nature in terms of periodicity or pattern or both; the dete
ability of periodic components will depend on the locali
~with respect to the periodicity! of the stability of periodicity.
The proposed characterization of the underlying proc
through the periodicity attributes can be summarized by
following observations.

FIG. 11. ~a! The p spectrum of the global FIR-NH3 data series
~;5000 points!, which shows the absence of any stable periodic
~b! The p spectrum of a local data span~;270 data points! within
one data segment. The peaks appear atn
57,14,...56,63,69,76/77,84,91,97,104,..; the drifting of the peaks to
noninteger multiples of the fundamental period~57! indicates the
presence of fractional periodicity.~c! The p spectrum of 100-fold
interpolated data clearly indicates the presence of nearly stable
riodicity of 688 ~i.e., effective periodicity56.88).
ach
-

t-
n
n
is

ise
is

-

s
e

~a! If a globally or locally stable periodicity is not detec
able through thep spectrum, the series must be stochastic
strongly chaotic. It cannot have any component that is str
enough and yet predictable to render the overall series to
locally or globally predictable.

~b! If globally stable periodicity is not detectable but lo
cally stable periodicity is detectable throughp spectrum, the
series will be low dimensionally chaotic. Here the periodic
attribute~s! will vary. For segments over whichp spectrum
shows relatively steady periodicity, the pattern and/or
scaling factors will vary to limited extents, making predic
ability possible over ranges commensurate with the zone
stable periodicity.

~c! If globally stable periodicity is detectable, long-ter
predictability may be possible in spite of variability in oth
periodicity attributes, which~as is demonstrated! does not
necessarily imply lack of chaoticity.

It is demonstrated that the characterization of a proces
terms of its embedded periodic component~s! and the stabil-
ity of the periodicity attributes of the individual compo
nent~s! can provide a new insight into the understanding o
large class of irregular cyclical processes.
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APPENDIX: OPTIMAL MODELING USING m-QRcp

FACTORIZATION AND Cp STATISTIC

Consider the modeling problem

y5Gu, ~A1!

where them3n matrix G5@g1 ,g2 ,...,gi ,...,gn# contains
n (,m) m- long regressor vectorsgi , y is the output vector,
and u is the parameter vector. For optimal modeling, thep
(,n and unknown! most significant variables are selecte
leading to the modely5G* ue1e, whereG* PG, ue is the
corresponding LS estimatedp parameter vector, ande stands
for the uncertainty.m-QRcp factorization can lead to ‘‘opti
mal successive selection’’ of thep (<n) regressors inG in
Eq. ~A1!. The algorithm can be explained as follows.

.

e-
imated

FIG. 12. ~a! The estimation with two periodic components of periodicity 72, and 46 for Mackey-Glass process witht523 ~original series
, estimated series .......! over;450 data points. The figure shows that although the series is known to be chaotic, it can be approx

by two additive periodic components.~b! The prediction performance in terms of correlation coefficientr vs prediction horizonTp over 450
data points.
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First, the column vector ofG producing maxugi
Tyu, i 51

to n, is selected and is swapped withg1 . The subsequen
columns of G are pivoted as follows. Using the Gram
Schmidt orthogonalization@18#, if q1 be the unit vector in the
direction of g1 , the portion ofgj ( j 52 to n! and y in a
direction orthogonal tog1 will be given by (gj2q1

Tgjq1) and
(y2q1

Tyq1), respectively.
At the i th stage of selection, the rotated variables vect

(gi* ) and the rotated output (y* ) vector are

gi* 5gj2~q1
Tgjq11¯1qi 21

T gjqi 21!,

i 52 to n, j 5 i to n

y* 5y2~q1
Tyq11¯1qi 21

T yqi 21!,

FIG. 13. ~a!–~c! The p spectrum of the logistic map forr
53.56876,r 53.6786, andr 53.92, respectively. For the first two
cases, thep spectrums show the presence of distinct globally sta
periodicity of length 32 and 2, respectively, but in the last ca
~which is well into the chaotic regime@32#! no repetitive peaks are
found, demonstrating the absence of any globally stable peri
component.
ng

-

s

and i th selected vector is the one maximizingugi*
Ty* u; the

selection procedure is repeated untilp regressors are se
lected. MinimumCp statistic @29# leads to the selection o
the optimal model order~p!.

e
e

ic

FIG. 14. ~a! The estimation~original series , estimated se-
ries ......! for r 53.567 86 shows that there is a perfect match w
just one periodic component, which has globally stable periodic
and pattern; the residual energy is 0%.~b! The estimation forr
53.6786~original series , estimated series ......! using the mov-
ing data window. The requirement for the moving data window h
been explained in Sec. II F and Sec. IV C 2!. ~c! The estimation
over a local segment having periodicityN55 for r 53.92 ~original
series , estimated series ......!. The estimation error is large bu
in some sections there is a nearly perfect fit by the estimated p
odic component, which is due to the recurrence of the periodi
and pattern in the chaotic process.
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